Standard Specification for
Tinned Soft or Annealed Copper Wire for Electrical
Purposes

This standard is issued under the fixed designation B 33; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reappraisal. A
superscript question mark (†) indicates an editorial change since the last revision or reappraisal.

This specification has been approved for use by agencies of the Department of Defense. Consult the DoD Index of Specifications and
Standards for the specific year of issue which has been adopted by the Department of Defense.

1. Scope
1.1 This specification covers tinned, round, soft or annealed copper wire for electrical purposes.
1.2 The SI values for density and resistivity are to be regarded as standard. For all other properties the inch-pound values are to be regarded as the standard and the SI units may be approximate.

2. Referenced Documents
2.1 ASTM Standards:
B 49 Specification for Copper Redraw Rod for Electrical Purposes
B 193 Test Method for Resistivity of Electrical Conductor Materials
B 258 Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors

3. Ordering Information
3.1 Orders for material under this specification shall include the following information:
3.1.1 Quantity of each size,
3.1.2 Wire size-diameter in inches (see 5.3 and Table 1),
3.1.3 Type of copper, if special (see 4.2),
3.1.4 Package size (see 10.1),
3.1.5 Special packaging marking, if required, and
3.1.6 Place of inspection (see 7.1).
3.2 In addition, Supplementary Requirements shall apply only when specified by the purchaser in the inquiry, contract, or purchase order for direct procurement by agencies of the U. S. Government (S1, S2, and S3).

4. Material
4.1 Tin for Coating—The tin used for coating shall be commercially pure (Explanatory Note 1). For purposes of this specification, the tin shall be considered “commercially pure” if the total of other elements, exclusive of copper, does not exceed 1%. Notwithstanding the previous sentence, chemical analysis of the tin coating or of the tin used for coating shall not be required under this specification. Adequacy of the tin coating is assured by the continuity of coating and adherence of coating requirements (see 5.4 and 5.5, respectively).
4.2 Copper-Base Metal—The base metal shall be copper of such quality and purity that the finished product shall have properties and characteristics prescribed in this specification.

NOTE 1—Specification B 49 defines copper suitable for use.

4.3 Copper bars of special qualities, forms, or types, as may be agreed upon between the manufacturer and the purchaser, and which will conform to the requirements prescribed in this specification may also be used.

5. General Requirements (See Section 8)
5.1 Tensile Strength and Elongation (Explanatory Notes 2 and 3)—The tinned wire shall conform to the requirements for elongation prescribed in Table 1. No requirements for tensile strength are specified. For wire whose nominal diameter is more than 0.001 in. (0.025 mm) greater than a size listed in Table 1, but less than that of the next larger size, the requirements of the next larger size shall apply.

5.2 Resistivity (Explanatory Notes 1 and 4)—The electrical resistivity of tinned wire at a temperature of 20°C shall not exceed the values prescribed in Table 2.

5.3 Dimensions and Permissible Variations (Explanatory Note 2)—The wire sizes shall be expressed as the diameter of the wire in decimal fractions of an inch to the nearest 0.0001 in. (0.001 mm). The tinned wire shall not vary from the specified diameter by more than the amounts prescribed in Table 3.

5.4 Continuity of Coating—The tin coating shall be continuous. The continuity of coating on the wire shall be determined on representative samples taken before stranding or insulating. The continuity of tinning shall be determined by the hydrochloric acid-sodium polysulfide test in accordance with 6.4.

5.5 Adherence of Coating—The tin coating shall be firmly adherent to the surface of the copper. The adherence of coating on the wire shall be determined on representative samples taken before stranding or insulating. The adherence of coating shall be determined by the wrapping and immersion test in accordance with 6.5.

5.6 Joints—Necessary joints in the completed wire and in the wire and rods prior to final drawing shall be made in accordance with the best commercial practice.

5.7 Finish—The coating shall consist of a smooth contin-
TABLE 1 Tensile Requirements

<table>
<thead>
<tr>
<th>Diameter, in.</th>
<th>Area at 20°C</th>
<th>Elongation in 10</th>
<th>Diameter, in.</th>
<th>Area at 20°C</th>
<th>Elongation in 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm² in.²</td>
<td>in. min. %</td>
<td></td>
<td>cm² in.²</td>
<td>in. min. %</td>
</tr>
<tr>
<td>0.4600</td>
<td>211 600</td>
<td>0.1662</td>
<td>0.0359</td>
<td>1 290</td>
<td>0.000101</td>
</tr>
<tr>
<td>0.4096</td>
<td>167 800</td>
<td>0.1318</td>
<td>0.0320</td>
<td>1 020</td>
<td>0.000804</td>
</tr>
<tr>
<td>0.3648</td>
<td>133 100</td>
<td>0.1045</td>
<td>0.0285</td>
<td>812</td>
<td>0.000638</td>
</tr>
<tr>
<td>0.3249</td>
<td>105 600</td>
<td>0.08291</td>
<td>0.0253</td>
<td>640</td>
<td>0.000533</td>
</tr>
<tr>
<td>0.2983</td>
<td>83 690</td>
<td>0.06573</td>
<td>0.0226</td>
<td>511</td>
<td>0.000463</td>
</tr>
<tr>
<td>0.2676</td>
<td>66 360</td>
<td>0.05212</td>
<td>0.0201</td>
<td>404</td>
<td>0.000377</td>
</tr>
<tr>
<td>0.2294</td>
<td>52 620</td>
<td>0.04133</td>
<td>0.0179</td>
<td>320</td>
<td>0.000252</td>
</tr>
<tr>
<td>0.2043</td>
<td>41 740</td>
<td>0.03278</td>
<td>0.0159</td>
<td>253</td>
<td>0.000189</td>
</tr>
<tr>
<td>0.1819</td>
<td>33 090</td>
<td>0.02599</td>
<td>0.0142</td>
<td>202</td>
<td>0.000158</td>
</tr>
<tr>
<td>0.1620</td>
<td>26 240</td>
<td>0.02061</td>
<td>0.0126</td>
<td>159</td>
<td>0.000125</td>
</tr>
<tr>
<td>0.1443</td>
<td>20 820</td>
<td>0.01835</td>
<td>0.0113</td>
<td>128</td>
<td>0.000100</td>
</tr>
<tr>
<td>0.1285</td>
<td>16 510</td>
<td>0.01297</td>
<td>0.0100</td>
<td>100</td>
<td>0.0000786</td>
</tr>
<tr>
<td>0.1144</td>
<td>13 090</td>
<td>0.01028</td>
<td>0.0097</td>
<td>93</td>
<td>0.0000582</td>
</tr>
<tr>
<td>0.1019</td>
<td>10 380</td>
<td>0.008155</td>
<td>0.0080</td>
<td>84</td>
<td>0.0000503</td>
</tr>
<tr>
<td>0.0907</td>
<td>8 230</td>
<td>0.00648</td>
<td>0.0071</td>
<td>60</td>
<td>0.0000396</td>
</tr>
<tr>
<td>0.0808</td>
<td>6 530</td>
<td>0.00513</td>
<td>0.0063</td>
<td>40</td>
<td>0.0000312</td>
</tr>
<tr>
<td>0.0720</td>
<td>5 180</td>
<td>0.00407</td>
<td>0.0056</td>
<td>31</td>
<td>0.0000246</td>
</tr>
<tr>
<td>0.0641</td>
<td>4 110</td>
<td>0.00323</td>
<td>0.0050</td>
<td>25</td>
<td>0.0000186</td>
</tr>
<tr>
<td>0.0571</td>
<td>3 260</td>
<td>0.00256</td>
<td>0.0045</td>
<td>20</td>
<td>0.0000159</td>
</tr>
<tr>
<td>0.0508</td>
<td>2 580</td>
<td>0.00203</td>
<td>0.0040</td>
<td>16</td>
<td>0.0000126</td>
</tr>
<tr>
<td>0.0453</td>
<td>2 050</td>
<td>0.00161</td>
<td>0.0035</td>
<td>12</td>
<td>0.0000062</td>
</tr>
<tr>
<td>0.0403</td>
<td>1 620</td>
<td>0.00128</td>
<td>0.0031</td>
<td>9.61</td>
<td>0.00000755</td>
</tr>
</tbody>
</table>

TABLE 2 Electrical Resistivity Requirements

<table>
<thead>
<tr>
<th>Nominal Diameter, in.</th>
<th>Resistivity at 20°C (Ql/mile²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.460 to 0.290, incl</td>
<td>696.15</td>
</tr>
<tr>
<td>Under 0.290 to 0.103, incl</td>
<td>900.77</td>
</tr>
<tr>
<td>Under 0.103 to 0.0261, incl</td>
<td>910.15</td>
</tr>
<tr>
<td>Under 0.0261 to 0.0111 incl</td>
<td>929.92</td>
</tr>
<tr>
<td>Under 0.0111 to 0.0030, incl</td>
<td>939.51</td>
</tr>
</tbody>
</table>

TABLE 3 Permissible Variations in Diameter

<table>
<thead>
<tr>
<th>Nominal Diameter of Wire, in.</th>
<th>Permissible Variations in Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>plus</td>
</tr>
<tr>
<td>Under 0.0100 and over</td>
<td>0.0003 in. (0.3 mil)</td>
</tr>
<tr>
<td>3% A</td>
<td>1% A</td>
</tr>
</tbody>
</table>

Expressed to the nearest 0.0001 in. (0.1 mil).

6. Test Methods

6.1 Tensile Strength and Elongation (Explanatory Note 5)—No test for tensile strength shall be required. The elongation of wire whose nominal diameter is larger than 0.0808 in. (2.052 mm) in diameter shall be determined as the permanent increase in length, expressed in percent of the original length, due to the breaking of the wire in tension, measured between gage marks placed originally 10 in. (254 mm) apart upon the test specimen. The elongation of wire whose nominal diameter is 0.0808 in. and under may be determined as described above or by measurements made between the jaws of the testing machine. When the latter method is used, the zero length shall be the distance between the jaws at the start of the tension test and be as near 10 in. as practicable and the final length shall be the distance between the jaws at the time of rupture. The fracture shall be between gage marks in the case of specimens so marked or between the jaws of the testing machine and not closer than 1 in. (25.4 mm) to either gage mark or either jaw.

6.2 Resistivity (Explanatory Note 4)—The electrical resistivity of the material shall be determined in accordance with Test Method B 193. The purchaser may accept certification that the wire was drawn from rod stock meeting the international standard for annealed copper in lieu of resistivity tests on the finished wire.

6.3 Dimensional Measurements—Dimensional measurements shall be made with a micrometer caliper equipped with a vernier graduated in 0.0001 in. (0.0025 mm). Measurements shall be made on at least three places on each unit selected for this test. If accessible, one measurement shall be taken on each end and one near the middle. The average of the three measurements shall determine compliance with the requirements.

6.4 Continuity of Coating:

6.4.1 Specimens:

6.4.1.1 Length of Specimens—Test specimens shall have a length of about 6 in. (152 mm). They shall be tagged or marked to correspond with the coil, spool, or reel from which they were cut.

6.4.1.2 Treatment of Specimens—The specimens shall be thoroughly cleaned by immersion in a suitable organic solvent such as benzene, ether, or trichloroethylene for at least 3 min; then removed and wiped dry with a clean, soft cloth (Caution, Explanatory Note 6). The specimens thus cleaned shall be kept wrapped in a clean, dry cloth until tested. That part of the specimen to be immersed in the test solution shall not be handled. Care shall be taken to avoid abrasion by the cut ends.
6.4.2 Special Solutions Required:

6.4.2.1 Hydrochloric Acid Solution (sp gr 1.088)—Commercial HCl (sp gr 1.12) shall be diluted with distilled water to a specific gravity of 1.088 measured at 15.6°C (60°F). A portion of HCl solution having a volume of 180 mL shall be considered to be exhausted when the number of test specimens prescribed in Table 6 of a size as indicated in 6.4.3 have been immersed in it for two cycles.

6.4.2.2 Sodium Polysulfide Solution (sp gr 1.142) (Explanatory Note 7)—A concentrated solution shall be made by dissolving sodium polysulfide crystals in distilled water until the solution is saturated at about 21°C (70°F), and adding sufficient flowers of sulfur (in excess of 250 g/L of solution) to provide complete saturation, as shown by the presence of an excess of sulfur after the solution has been allowed to stand for at least 24 h. The test solution shall be made by diluting a portion of the concentrated solution with distilled water to a specific gravity of 1.142 at 15.6°C (60°F). The sodium polysulfide test solution should have sufficient strength to blacken thoroughly a piece of clean untinned copper wire in 5 s. A portion of the test solution used for testing samples shall not be considered to be exhausted until it fails to blacken a piece of clean copper as described above.

6.4.3 Procedure:

6.4.3.1 Immersion of Specimens—Immerse a length of at least 4½ in. (114 mm) from each of the clean specimens, in accordance with the following cycles, in test solutions maintained at a temperature between 15.6 and 21°C (60 and 70°F); (1) Immerse the specimen for 1 min in the HCl solution described in 6.4.2, wash, and wipe dry; (2) immerse the specimen for 30 s in the sodium polysulfide solution described in 6.4.2, wash, and wipe dry; (3) immerse the specimen for 1 min in the HCl solution, wash, and dry; (4) immerse the specimen for 30 s in the sodium polysulfide solution, wash, and wipe dry.

6.4.3.2 Washing Specimens—After each immersion, immediately wash the specimens thoroughly in clean water and wipe dry with a clean, soft cloth.

6.4.3.3 Examination of Specimens—After immersion and washing, examine the specimens to ascertain if copper exposed through openings in the tin coating has been blackened by the action of the sodium polysulfide. The specimens shall be considered to have failed if, by such blackening, exposed copper is revealed. No attention shall be paid to blackening within 0.5 in. (12.7 mm) of the cut end. A grayish brown appearance of the coating shall not constitute failure.

6.5 Adherence of Coating:

6.5.1 Specimens:

6.5.1.1 Length of Specimens—Test specimens shall be approximately 12 in. (305 mm) in length and shall be tagged or marked to correspond with the coil, spool, or reel from which they are cut.

6.5.1.2 Treatment of Specimens—The specimens shall be thoroughly cleaned, if required, by immersion in a suitable organic solvent such as benzene, ether, or trichloroethylene for at least 3 min, then removed and dried (Caution, Explanatory Note 6). The specimens thus cleaned shall be kept wrapped in a clean dry cloth until tested. That part of the specimens to be immersed in the test solution shall not be handled. Care shall be taken to avoid abrasion of the surface to be subjected to test. Wire of sizes 0.005 in. (0.13 mm) and smaller may be cleaned after wrapping around the mandrel.

6.5.2 Procedure:

6.5.2.1 Wrapping—Slowly wrap the test specimen in a suitable manner in an open helix around a polished mandrel having rounded ends and a diameter not to exceed four times the nominal diameter of the specimen. Take care not to stretch the specimen during the wrapping operation. The spacing of the consecutive turns shall be approximately equal to the diameter of the wire. For sizes 0.021 in. (0.53 mm) and smaller not more than six helical turns shall be used for the
test, and for wire larger than 0.021 in. not more than three turns shall be used.

6.5.2.2 Immersion Test—Remove the helically wrapped portion of the test specimen from the mandrel and immerse completely in the sodium polysulfide solution (see 6.4.2) for 30 s at the temperature prescribed in 6.4.3. On removal from the sodium polysulfide solution, immediately rinse the specimen in clean water and remove the excess by shaking.

6.5.2.3 Examination of Specimens—Examine visually the outer peripheral surface of the helically wrapped portion of the specimen. For wires 0.021 in. (0.53 mm) and smaller, a magnification not greater than three times may be used. Any cracking or parting of the coating in this area shown by blackening of the copper shall be cause for rejection. A grayish brown appearance of the coating after immersion shall not constitute failure.

6.6 Finish—Surface-finish inspection shall be made with the unaided eye (normal spectacles excepted).

7. Inspection

7.1 General (Explanatory Notes 8 and 9)—Unless otherwise specified in the contract or purchaser order, the manufacturer shall be responsible for the performance of all inspection and test requirements specified.

7.1.1 All inspections and tests shall be made at the place of manufacture unless otherwise especially agreed upon between the manufacturer and the purchaser at the time of purchase.

7.1.2 The manufacturer shall afford the inspector representing the purchaser all reasonable manufacturer’s facilities to satisfy him that the material is being furnished in accordance with this specification.

7.1.3 Unless otherwise agreed upon between the purchaser and the manufacturer, conformance of the wire to the various requirements listed in Section 5 shall be determined on samples taken from each lot of wire presented for acceptance.

7.1.4 The manufacturer shall, if requested prior to inspection, certify that all wire in the lot was made under such conditions that the product as a whole conforms to the requirements of this specification as determined by regularly made and recorded tests.

7.2 Definitions Applicable to Inspection:

7.2.1 lot (Explanatory Note 8)—any amount of wire of one type and size presented for acceptance at one time, such amount, however, not to exceed 25 000 lb (11 350 kg).

7.2.2 sample—a quantity of production units (coils, reels, etc.) selected at random from the lot for the purpose of determining conformance of the lot to the requirements of this specification.

7.2.3 specimen—a length of wire removed for test pur-

poses from any individual production unit of the sample.

7.3 Sample Size (Explanatory Note 9)—The number of production units in a sample shall be as follows:

7.3.1 For elongation and resistivity determinations, the sample shall consist of four production units. For continuity and adherence of coating tests, the sample shall consist of eight production units. From each unit, one test specimen of sufficient length shall be removed for the performance of the required tests.

7.3.2 For dimensional measurements, the sample shall consist of a quantity of production units shown in Table 4 under the heading “First Sample.”

7.3.3 For surface-finish inspection and for packaging inspection (when specified by the purchaser at the time of placing the order) the sample shall consist of a quantity of production units shown in Table 5.

8. Conformance Criteria (Explanatory Note 9)

8.1 Any lot of wire, the samples of which comply with the conformance criteria of this section, shall be considered as complying to the requirements of Section 5. Individual production units that fail to meet one or more of the requirements shall be rejected. Failure of a sample group from a lot to meet one or more of the following criteria shall constitute cause for rejection of the lot. The conformance criteria for each of the prescribed properties given in Section 5 are as follows:

8.1.1 Elongation—The lot shall be considered conforming if the average elongation of the four specimens is not less than the appropriate elongation value in Table 1 plus 2.8 %; however, any individual production unit, the specimen from which has an elongation less than the appropriate elongation value in Table 1 shall be rejected.

8.1.1.1 The lot shall be considered to have failed to meet the elongation conformance criterion if the average of the four specimens is less than the elongation in Table 1 plus 2.8 % and the elongation of any of the individual specimens is less than the value in Table 1.

8.1.1.2 If the average of the four specimens is less than the elongation in Table 1 plus 2.8 % and the elongation of each of the individual specimens is equal to or more than the value in Table 1, six additional specimens from six production units other than the four originally sampled shall be tested. The lot shall be considered conforming if the elongation of each of the ten specimens is not less than the appropriate elongation value in Table 1, and the average of the ten specimens is not less than that value plus 2.8 %. The lot shall be considered to have failed to meet the elongation requirement if any of the ten specimens is less than the appropriate elongation value in Table 1 or if the average of the ten specimens is less than that value plus 2.8 %.

8.1.2 Resistivity—The electrical resistivity of each of the four specimens shall conform to the requirements of 5.2.
Failure to meet these requirements shall constitute failure to meet the resistivity conformance criterion.

8.1.3 Dimensions—The dimensions of the first sample (Table 4) shall conform to the requirements of 5.3. If there are no failures, the lot conforms to this requirement. If there are failures but the number of these does not exceed the allowable defect number c_2 (Table 4), for the respective number of units in the sample, a second sample equal to n_2 shall be taken and the total defects of the n_1 plus n_2 units shall not exceed the allowable defect number c_2. Failure to meet this requirement shall constitute failure to meet the dimensional conformance criterion.

8.1.4 Continuity of Coating—The continuity of the coating of each of the eight specimens shall conform to the requirements of 5.4. Failure of more than two specimens shall constitute failure to meet the continuity criterion. If not more than two specimens fail to meet the continuity criterion, eight additional specimens from the lot shall be tested, all of which shall conform to the continuity criterion. However, any individual production unit, the specimen from which failed to meet the continuity criterion, shall be rejected.

8.1.5 Adherence of Coating—The adherence of the coating of each of the eight specimens shall conform to the requirements of 5.5. Failure of more than two specimens shall constitute failure to meet the adherence criterion. If not more than two specimens fail to meet the adherence criterion, eight additional specimens from the lot shall be tested, all of which shall conform to the adherence criterion. However, any individual production unit, the specimen from which failed to meet the adherence criterion, shall be rejected.

8.1.6 Surface Finish—The surface finish of the samples taken in accordance with Table 5 shall conform to the requirements of 5.7. The number of units in the sample showing surface defects not consistent with commercial practice shall not exceed the allowable defect number c, in Table 5. Failure to meet this requirement shall constitute failure to meet the surface-finish conformance criterion.

8.1.7 Packaging—Conformance to the packaging requirements specified by the purchaser shall be determined in accordance with Table 5. The number of units in the sample showing nonconformance to the requirement shall not exceed the allowable defect number c, in Table 5. Failure to meet this requirement shall constitute failure to meet the packaging conformance criterion.

9. Density (Explanatory Note 10)

9.1 For the purpose of calculating linear densities, cross sections, etc., the density of the copper shall be taken as 8.89 g/cm³ (0.32117 lb/in³) at 20°C.

10. Packaging and Shipping

10.1 Package sizes shall be agreed upon by the manufacturer and the purchaser in the placing of individual orders.

10.2 The tinned wire shall be protected against damage in ordinary handling and shipping.

11. Keywords

11.1 tinned annealed copper wire; tinned copper electrical wire; tinned soft copper wire

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, or order, for agencies of the U.S. Government.

S1. Referenced Documents

S1.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

S1.1.1 Federal Standards:

Fed. Std. No. 102 Preservation, Packaging and Packing Levels
Fed. Std. No. 123 Marking for Shipment (Civil Agencies)
Fed. Std. No. 185 Identification Marking of Copper and Copper-Base Alloy Mill Products

S1.1.2 Military Standard:

MIL-STD-129 Marking for Shipment and Storage
MIL-C-3993 Packaging of Copper and Copper-Base Alloy Mill Products

S2. Identification Marking

S2.1 All material shall be properly marked for identification in accordance with Fed. Std. No. 185 except that the ASTM specification number shall be shown.

S3. Inspection

S3.1 The purchaser shall have the right to perform any of the inspections and tests set forth in this specification when such inspections and tests are deemed necessary to assure that the material conforms to the prescribed requirements.

S4. Preparation for Delivery

S4.1 Preservation, Packaging, Packing:

S4.1.1 Military Agencies—The material shall be separated by size, composition, grade, types, temper, and class, as applicable, and shall be preserved and packaged. Level A or C and packed Level A, B, or C as specified in the contract or purchase order, in accordance with the requirements of MIL-C-3993.

S4.1.2 Civil Agencies—The requirements of Fed. Std. No. 102 shall be referenced for definitions of the various levels of packaging protection.

S4.2 Marking:

S4.2.1 Military Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with MIL-STD-129.

S4.2.2 Civil Agencies—In addition to any special marking required by the contract or purchase order, marking for shipment shall be in accordance with Fed. Std. No. 123.

4 Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, Attn: NPQDS.